Newer
Older
---
title: "Ergebnisse der Bundeswaldinventur in Brandenburg"
#subtitle: "Informationen als Infografik zu den Brendenburger Ergebnisdaten der BWI 2022 für die Hosentasche und Webseite"
institution: "Landeskompetenzzentrum Forst Eberswalde"
author: "Torsten Wiebke und Dr. Ulrike Hagemann"
date: last-modified
date-format: "[Stand] D. M. YYYY"
format:
pdf:
documentclass: scrreprt #Komascript reprt
include-in-header:
- text: |
\usepackage{easy-todo}
use-rsvg-convert: true
#default-image-extension: png
keep_tex: true
# wenn nur PDF: in der Console: quarto::quarto_render("your_document.qmd", output_format = "pdf")
# quarto::quarto_render("bwi_interpretationsworkshop.qmd", output_format = "revealjs")
docx:
toc: true
number-sections: true
html:
toc: true
revealjs:
# ermölicht horizontale und vertikale Gliederung
navigation-mode: vertical
# gibt die Überschriftenebene an bis zu der eine eigene Folie erzeugt werden soll
slide-level: 4
incremental: false
slide-number: true
editor_options:
markdown:
wrap: 72
#editor: visual
---
{{< include librarys-datimport.qmd >}}
# Die Bundeswaldinventur (BWI)
- Bundesweite Stichprobeninventur alle 10 Jahre im Wald nach § 41 a
BWaldG
- seit 1987, Deutschlandweit seit 2002 - 4. Turnus
- Ergebnisse sind das Fundament für forst-, wirschafts- und
umweltpolitische Entscheidungen sowie Grundlage für eine nachhaltige
Waldbewirtschaftung
- Modellierung zukünftiger Waldentwicklung und Holzaufkommen
(WEHAM)
- Aussagen zu den Klimaschutzleistungen des Waldes
- Planungs- und Investitionsentscheidungen im Cluster Forst und
Holz
- Datenbasis für die forstliche Forschung
:::
::: {.column width="50%"}

:::
:::::
## Datenerhebung
- Aufnahmen in Brandenburg von April 2021 bis Ende 2022
- Stichprobennetz von 2 km x 2 km
- insgesamt wurden ca.
`r format(trackt_eckenanzahl %>% select(begutachtungsecken) %>% pull() %>% as.numeric(), big.mark = ".", decimal.mark = ",", scientific = FALSE)`
Punkte begutachtet
- `r format(trackt_eckenanzahl %>% select(ausschreibungstrakte) %>% pull() %>% as.numeric(), big.mark = ".", decimal.mark = ",", scientific = FALSE)`
Trakte mit
`r format(trackt_eckenanzahl %>% select(waldecke) %>% pull() %>% as.numeric(), big.mark = ".", decimal.mark = ",", scientific = FALSE)`
Ecken wurden zur Begutachtung ausgeschrieben und
`r format(trackt_eckenanzahl %>% select(lfebearbeitungsecke) %>% pull() %>% as.numeric(), big.mark = ".", decimal.mark = ",", scientific = FALSE)`
Ecken von eigenen Trupps begutachtet
- `r format(waldecke_begeh22 %>% filter(Begehbarkeit == "begehbar + nicht begehbar" & Waldspezifikation == "Wald") %>% select(Ecken) %>% pull() %>% as.numeric(), big.mark = ".", decimal.mark = ",", scientific = FALSE)`
Ecken lagen im Wald nach LWaldG und [Walddefinition der
BWI](#imp-bwi_walddef)
- von diesen waren
`r format(round((waldecke_begeh22 %>% filter(Begehbarkeit == "begehbar" & Waldspezifikation == "Wald") %>% select(Ecken) %>% pull()),2), big.mark = ".", decimal.mark = ",", scientific = FALSE)`
begehbar und es konnten Daten aufgenommen werden.
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
::::: columns
::: {.column width="50%"}
- trotz hoher Flächenkonkurrenz Waldfläche mit
`r format(waldfl_spez_long %>% filter(Land=='Brandenburg' & Kategorie == 'Wald') %>% select(Fläche) %>% pull(), big.mark = ".", decimal.mark = ",", scientific = FALSE)` ha
unverändert
- viertgrößte Waldfläche Deutschlands; mit
`r format(waldflant %>% filter(Kategorie == "Wald" & Land == "Brandenburg") %>% select(Anteil) %>% pull() %>% round(2), big.mark = ".", decimal.mark = ",", scientific = FALSE)` %
auf Platz 5 der waldreichsten Bundesländer
- Abnahme der Blößen und des Nichtholzbodens v.a. durch Sukzession
(z.B. auf ehemaligen Truppenübungsplätzen)
:::
::: {.column width="50%"}
```{r TreemapWaldspez, echo=FALSE}
ggplot((waldfl_spez_long %>%
filter(Land == 'Brandenburg' & Kategorie != 'Wald' & Kategorie != 'Holzboden')
), aes(area = Fläche, fill = Kategorie, label = paste(Kategorie,"\n", paste0(format(round(Fläche), big.mark = ".", decimal.mark = ",", scientific = FALSE)), "ha","\n",
"(", round(Prozent, 1), "%)", sep = ""))) +
geom_treemap(color = "black", size = 0.5) + # Schwarzer Rand um die Felder
geom_treemap_text(colour = "black", place = "centre") +
scale_fill_manual(values = c(
"bestockter Holzboden" = "#24d617", # Grün für bestockter Holzboden
"Blöße" = "#d6b913", # Ocker für Blöße
"Nichtholzboden" = "grey" # Grau für Nichtholzboden
)) +
theme(legend.position = "right") +
labs(title = "Waldflächen nach Spezifikation\n in Brandenburg in der BWI 2022")
ggsave("images/TreemapWaldspezifikationen.png", width = 10, height = 10, units = "cm")
```
:::
:::::
### Waldflächentext
Brandenburg verfügt über eine Waldfläche von
**`r format(waldfl_spez_long %>% filter(Land=='Brandenburg' & Kategorie == 'Wald') %>% select(Fläche) %>% pull(), big.mark = ".", decimal.mark = ",", scientific = FALSE)` ha**.
Forstwirtschaftlich unterteilt besteht diese aus:
- »bestockter Holzboden«:
`r format(waldfl_spez_long %>% filter(Land=='Brandenburg' & Kategorie == 'bestockter Holzboden') %>% select(Fläche) %>% pull(), big.mark = ".", decimal.mark = ",", scientific = FALSE)` ha,
das sind
`r format(waldfl_spez_long %>% filter(Land=='Brandenburg' & Kategorie == 'bestockter Holzboden') %>% select(Prozent) %>% pull(), big.mark = ".", decimal.mark = ",", scientific = FALSE)` %.
- »Nichtholzboden«:
`r format(waldfl_spez_long %>% filter(Land=='Brandenburg' & Kategorie == 'Nichtholzboden') %>% select(Fläche) %>% pull(), big.mark = ".", decimal.mark = ",", scientific = FALSE)` ha,
das sind
`r format(waldfl_spez_long %>% filter(Land=='Brandenburg' & Kategorie == 'Nichtholzboden') %>% select(Prozent) %>% pull(), big.mark = ".", decimal.mark = ",", scientific = FALSE)` %.
- »Blößen«:
`r format(waldfl_spez_long %>% filter(Land=='Brandenburg' & Kategorie == 'Blöße') %>% select(Fläche) %>% pull(), big.mark = ".", decimal.mark = ",", scientific = FALSE)` ha,
das sind
`r format(waldfl_spez_long %>% filter(Land=='Brandenburg' & Kategorie == 'Blöße') %>% select(Prozent) %>% pull(), big.mark = ".", decimal.mark = ",", scientific = FALSE)` %.
ggplot((waldfl_spez_long %>%
filter(Land == 'Brandenburg' & Kategorie != 'Wald' & Kategorie != 'Holzboden')
), aes(area = Fläche, fill = Kategorie, label = paste(Kategorie,"\n", paste0(format(round(Fläche), big.mark = ".", decimal.mark = ",", scientific = FALSE)), "ha","\n", round(Prozent), "%"))) +
geom_treemap() +
geom_treemap_text(colour = "white", place = "centre", #grow = TRUE,
) +
scale_fill_brewer(palette = "Set3") +
theme(legend.position = "right") +
labs(title = "Waldflächen nach Spezifikation\n in Brandenburg in der BWI 2022")
#ggsave("images/TreemapWaldspezifikationen.png", width = 10, height = 10, units = "cm")
```
Damit nimmt Brandenburg nach absoluter Waldfläche bundesweit den
**vierten** Platz - nach Bayern, Baden-Württemberg und Niedersachsen -
und nach relativer Waldfläche, mit
**`r format(waldflant %>% filter(Kategorie == "Wald" & Land == "Brandenburg") %>% select(Anteil) %>% pull() %>% round(2), big.mark = ".", decimal.mark = ",", scientific = FALSE)` %**
den **fünften** Platz - nach Rheinland-Pfalz, Hessen, Baden-Württemberg
und dem Saarland - ein.
### Waldeigentum
Die Brandenburger Waldfläche in Höhe von
`r format(waldfl_eig$waldfl22_eig %>% filter(Land == "Brandenburg") %>% select('alle Eigentumsarten') %>% pull(), big.mark = ".", decimal.mark = ",", scientific = FALSE)` ha
teilt sich in
`r format(waldfl22_eig_long %>% filter(Land == "Brandenburg" & Eigentumsart %in% c("Privatwald")) %>% ungroup() %>% select(c(Prozent)) %>% pull())` %
Privatwald und
`r format(waldfl22_eig_long %>% filter(Land == "Brandenburg" & Eigentumsart %in% c("Öffentlicher Wald")) %>% ungroup() %>% select(c(Prozent)) %>% pull())` %
öffentlicher Wald auf
```{r waldfl_brb_eig, echo=FALSE}
# Treemap erstellen
ggplot((waldfl22_eig_long %>%
filter(Land == "Brandenburg") %>%
filter(!Eigentumsart %in% c("Öffentlicher Wald", "Privatwald"))
),aes(
area = Fläche,
fill = Gruppe, # Gruppierung nach der Spalte "Gruppe"
label = paste(
Eigentumsart,
"\n",
formatC(
Fläche,
format = "f",
big.mark = ".",
decimal.mark = ",",
digits = 0
),
"ha"
) # Formatierung der Fläche
)
) +
geom_treemap(colour = "black", size = 0.8) + # Hinzufügen von Randlinien um die Rechtecke
geom_treemap_text(colour = "black", place = "centre", grow = TRUE) +
geom_treemap_text(aes(label = paste0(Prozent, "%")), # Prozentwerte unter der Fläche anzeigen
colour = "black", place = "bottom", grow = FALSE, size=12, padding.x = grid::unit(2, "mm")) +
labs(
title = "Waldflächenverteilung in Brandenburg",
subtitle = "Nach Eigentumsarten und Gruppen",
fill = "Gruppe" # Legende zeigt die Gruppierung
) +
theme(
#legend.position = "right", # Position der Legende
legend.text = element_text(size = 14), # Schriftgröße der Legendenbeschriftungen
#legend.title = element_text(size = 14, face = "bold") # Schriftgröße und Fettdruck des Legendentitels
)
#theme_minimal()
#ggsave("images/TreemapWaldfläche_Eigentum_Brandenburg_2022.png", width = 20, height = 15, units = "cm")
```